skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Quinn, Thomas"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract A consequence of a nonzero occupation fraction of massive black holes (MBHs) in dwarf galaxies is that these MBHs can become residents of larger galaxy halos via hierarchical merging and tidal stripping. Depending on the parameters of their orbits and original hosts, some of these MBHs will merge with the central supermassive black hole in the larger galaxy. We examine four cosmological zoom-in simulations of Milky Way-like galaxies to study the demographics of the black hole mergers that originate from dwarf galaxies. Approximately half of these mergers have mass ratios less than 0.04, which we categorize as intermediate mass ratio inspirals, or IMRIs. Inspiral durations range from 0.5–8 Gyr, depending on the compactness of the dwarf galaxy. Approximately half of the inspirals may become more circular with time, while the eccentricity of the remainder does not evolve. Overall, IMRIs in Milky Way-like galaxies are a significant class of black hole mergers that can be detected by LISA, and must be prioritized for waveform modeling. 
    more » « less
    Free, publicly-accessible full text available June 19, 2026
  2. Abstract We present a 3D shape analysis of both dark matter (DM) and stellar matter (SM) in simulated dwarf galaxies to determine whether stellar shape traces DM shape. Using 80 central and satellite dwarf galaxies from three simulation suites (“Marvelous Massive Dwarfs,” “Marvelous Dwarfs,” and the “DC Justice League”) spanning stellar masses of 106–1010M, we measure 3D shapes through the moment of inertia tensor at twice the effective radius to derive axis ratios (C/AandB/A) and triaxiality. We find that stellar shape does follow DM halo shape for our dwarf galaxies. However, the presence of a stellar disk in more massive dwarfs (M* ≳ 107.5M) pulls the distribution of stellarC/Aratios to lower values, while in lower-mass galaxies the gravitational potential remains predominantly shaped by DM. Similarly, stellar triaxiality generally tracks DM triaxiality, with this relationship being particularly strong for nondisky galaxies and weaker in disky systems. These correlations are reinforced by strong alignment between the SM and DM axes, particularly in disk galaxies. Further, we find no detectable difference in either SM or DM shapes when comparing two different supernova feedback implementations, demonstrating that shape measurements are robust to different implementations of baryonic feedback in dwarf galaxies. We also observe that a dwarf galaxy’s shape is largely unperturbed by recent mergers. This comprehensive study demonstrates that stellar shape measurements can serve as a reliable tool for inferring DM shapes in dwarf galaxies. 
    more » « less
    Free, publicly-accessible full text available June 12, 2026
  3. Abstract The interaction between supermassive black hole (SMBH) feedback and the circumgalactic medium (CGM) continues to be an open question in galaxy evolution. In our study, we use smoothed particle hydrodynamics simulations to explore the impact of SMBH feedback on galactic metal retention and the motion of metals and gas into and through the CGM of L*galaxies. We examine 140 galaxies from the 25 Mpc cosmological volume Romulus25, with stellar masses between log(M*/M) = 9.5–11.5. We measure the fraction of metals remaining in the interstellar medium (ISM) and CGM of each galaxy and calculate the expected mass of each SMBH based on theMBH–σrelation (Kormendy & Ho 2013). The deviation of each SMBH from its expected mass, ΔMBH, is compared to the potential of its host viaσ. We find that SMBHs with accreted mass aboveMBH–σare more effective at removing metals from the ISM than undermassive SMBHs in star-forming galaxies. Overall, overmassive SMBHs suppress the total star formation of their host galaxies and more effectively move metals from the ISM into the CGM. However, we see little to no evacuation of gas from the CGM out of their halos, in contrast with other simulations. Finally, we predict that Civcolumn densities in the CGM of L*galaxies are unlikely to depend on host galaxy SMBH mass. Our results show that the scatter in the low-mass end of the MBH–σrelation may indicate how effective an SMBH is in the local redistribution of mass in its host galaxy. 
    more » « less
  4. Abstract We examine the quenching characteristics of 328 isolated dwarf galaxies 10 8 < M star / M < 10 10 within theRomulus25cosmological hydrodynamic simulation. Using mock-observation methods, we identify isolated dwarf galaxies with quenched star formation and make direct comparisons to the quenched fraction in the NASA Sloan Atlas (NSA). Similar to other cosmological simulations, we find a population of quenched, isolated dwarf galaxies belowMstar< 109Mnot detected within the NSA. We find that the presence of massive black holes (MBHs) inRomulus25is largely responsible for the quenched, isolated dwarfs, while isolated dwarfs without an MBH are consistent with quiescent fractions observed in the field. Quenching occurs betweenz= 0.5–1, during which the available supply of star-forming gas is heated or evacuated by MBH feedback. Mergers or interactions seem to play little to no role in triggering the MBH feedback. At low stellar masses,Mstar≲ 109.3M, quenching proceeds across several Gyr as the MBH slowly heats up gas in the central regions. At higher stellar masses,Mstar≳ 109.3M, quenching occurs rapidly within 1 Gyr, with the MBH evacuating gas from the central few kpc of the galaxy and driving it to the outskirts of the halo. Our results indicate the possibility of substantial star formation suppression via MBH feedback within dwarf galaxies in the field. On the other hand, the apparent overquenching of dwarf galaxies due to MBH suggests that higher-resolution and/or better modeling is required for MBHs in dwarfs, and quenched fractions offer the opportunity to constrain current models. 
    more » « less
  5. Abstract We are entering an era in which we will be able to detect and characterize hundreds of dwarf galaxies within the Local Volume. It is already known that a strong dichotomy exists in the gas content and star formation properties of field dwarf galaxies versus satellite dwarfs of larger galaxies. In this work, we study the more subtle differences that may be detectable in galaxies as a function of distance from a massive galaxy, such as the Milky Way. We compare smoothed particle hydrodynamic simulations of dwarf galaxies formed in a Local Volume-like environment (several megaparsecs away from a massive galaxy) to those formed nearer to Milky Way–mass halos. We find that the impact of environment on dwarf galaxies extends even beyond the immediate region surrounding Milky Way–mass halos. Even before being accreted as satellites, dwarf galaxies near a Milky Way–mass halo tend to have higher stellar masses for their halo mass than more isolated galaxies. Dwarf galaxies in high-density environments also tend to grow faster and form their stars earlier. We show observational predictions that demonstrate how these trends manifest in lower quenching rates, higher Hifractions, and bluer colors for more isolated dwarf galaxies. 
    more » « less
  6. Thuesen, Erik V. (Ed.)
    Long-term datasets can reveal otherwise undetectable ecological trends, illuminating the historical context of contemporary ecosystem states. We used two decades (1997–2019) of scientific trawling data from a subtidal, benthic site in Puget Sound, Washington, USA to test for gradual trends and sudden shifts in total sea star abundance across 11 species. We specifically assessed whether this community responded to the sea star wasting disease (SSWD) epizootic, which began in 2013. We sampled at depths of 10, 25, 50 and 70 m near Port Madison, WA, and obtained long-term water temperature data. To account for species-level differences in SSWD susceptibility, we divided our sea star abundance data into two categories, depending on the extent to which the species is susceptible to SSWD, then conducted parallel analyses for high-susceptibility and moderate-susceptibility species. The abundance of high-susceptibility sea stars declined in 2014 across depths. In contrast, the abundance of moderate-susceptibility species trended downward throughout the years at the deepest depths– 50 and 70 m–and suddenly declined in 2006 across depths. Water temperature was positively correlated with the abundance of moderate-susceptibility species, and uncorrelated with high-susceptibility sea star abundance. The reported emergence of SSWD in Washington State in the summer of 2014 provides a plausible explanation for the subsequent decline in abundance of high-susceptibility species. However, no long-term stressors or mortality events affecting sea stars were reported in Washington State prior to these years, leaving the declines we observed in moderate-susceptibility species preceding the 2013–2015 SSWD epizootic unexplained. These results suggest that the subtidal sea star community in Port Madison is dynamic, and emphasizes the value of long-term datasets for evaluating patterns of change. 
    more » « less
  7. Abstract We study satellite counts and quenched fractions for satellites of Milky Way analogs inRomulus25, a large-volume cosmological hydrodynamic simulation. Depending on the definition of a Milky Way analog, we have between 66 and 97 Milky Way analogs inRomulus25, a 25 Mpc per-side uniform volume simulation. We use these analogs to quantify the effect of environment and host properties on satellite populations. We find that the number of satellites hosted by a Milky Way analog increases predominantly with host stellar mass, while environment, as measured by the distance to a Milky Way–mass or larger halo, may have a notable impact in high isolation. Similarly, we find that the satellite quenched fraction for our analogs also increases with host stellar mass, and potentially in higher-density environments. These results are robust for analogs within 3 Mpc of another Milky Way–mass or larger halo, the environmental parameter space where the bulk of our sample resides. We place these results in the context of observations through comparisons to the Exploration of Local VolumE Satellites and Satellites Around Galactic Analogs surveys. Our results are robust to changes in Milky Way analog selection criteria, including those that mimic observations. Finally, as our samples naturally include Milky Way–Andromeda pairs, we examine quenched fractions in pairs versus isolated systems. We find potential evidence, though not conclusive, that pairs, defined as being within 1 Mpc of another Milky Way–mass or larger halo, may have higher satellite quenched fractions. 
    more » « less
  8. The interaction between supermassive black hole (SMBH) feedback and the circumgalactic medium (CGM) continues to be an open question in galaxy evolution. In our study, we use SPH simulations to explore the impact of SMBH feedback on galactic metal retention and the motion of metals and gas into and through the CGM of L ∗ galaxies. We examine 140 galaxies from the 25 Mpc cosmological volume, Romulus25, with stellar masses between 3 × 10 9 - 3 × 10 11 M ⊙ . We measure the fraction of metals remaining in the ISM and CGM of each galaxy, and calculate the expected mass of its SMBH based on the M−σ relation. The deviation of each SMBH from its expected mass, ΔMBH is compared to the potential of its host via σ . We find that SMBHs with accreted mass above the empirical M−σ relation are about 15\% more effective at removing metals from the ISM than under-massive SMBHs in star forming galaxies. Over-massive SMBHs suppress the overall star formation of their host galaxies and more effectively move metals from the ISM into the CGM. However, we see little evidence for the evacuation of gas from their halos, in contrast with other simulations. Finally, we predict that C IV column densities in the CGM of L ∗ galaxies may depend on host galaxy SMBH mass. Our results show that the scatter in the low mass end of M−σ relation may indicate how effective a SMBH is at the local redistribution of mass in its host galaxy. 
    more » « less
  9. Abstract We explore the characteristics of actively accreting massive black holes (MBHs) within dwarf galaxies in the Romulus25cosmological hydrodynamic simulation. We examine the MBH occupation fraction, X-ray active fractions, and active galactic nucleus (AGN) scaling relations within dwarf galaxies of stellar mass 108M<Mstar< 1010Mout to redshiftz= 2. In the local universe, the MBH occupation fraction is consistent with observed constraints, dropping below unity atMstar< 3 × 1010M,M200< 3 × 1011M. Local dwarf AGN in Romulus25follow observed scaling relations between AGN X-ray luminosity, stellar mass, and star formation rate, though they exhibit slightly higher active fractions and number densities than comparable X-ray observations. Sincez= 2, the MBH occupation fraction has decreased, the population of dwarf AGN has become overall less luminous, and as a result the overall number density of dwarf AGN has diminished. We predict the existence of a large population of MBHs in the local universe with low X-ray luminosities and high contamination from X-ray binaries and the hot interstellar medium that are undetectable by current X-ray surveys. These hidden MBHs make up 76% of all MBHs in local dwarf galaxies and include many MBHs that are undermassive relative to their host galaxy’s stellar mass. Their detection relies on not only greater instrument sensitivity but also better modeling of X-ray contaminants or multiwavelength surveys. Our results indicate that dwarf AGN were substantially more active in the past, despite having low luminosity today, and that future deep X-ray surveys may uncover many hidden MBHs in dwarf galaxies out to at leastz= 2. 
    more » « less